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ABSTRACT: A new coupled model is developed to investigate interactions among geostrophic, Ekman, and near-inertial

(NI) flows. The model couples a time-dependent nonlinear slab Ekman layer with a two-layer shallow water model. Wind

stress forces the slab layer and horizontal divergence of slab-layer transport appears as a forcing in the continuity equation of

the shallowwatermodel. In one version of the slabmodel, self-advection of slab-layermomentum is retained and in another

it is not. The most obvious impact of this explicit representation of the surface-layer dynamics is in the high-frequency part

of the flow. For example, near-inertial oscillations are significantly stronger when self-advection of slab-layer momentum is

retained, this being true both for the slab-layer flow itself and for the interior flow that it excites. In addition, retaining the

self-advection terms leads to a new instability, which causes growth of slab-layer near-inertial oscillations in regions of

anticyclonic forcing and decay in regions of cyclonic forcing. In contrast to inertial instability, it is the sign of the forcing, not

that of the underlying vorticity, that determines stability. High-passed surface pressure fields are also examined and show

the surface signature of unbalanced flow to differ substantially depending on whether a slab-layer model is used and, if so,

whether self-advection of slab-layer momentum is retained.
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1. Introduction

At scales near the deformation radius and larger, near-

surface ocean flow can be thought of as a superposition of

geostrophic, Ekman, and near-inertial (NI) components, and

each of these can interact with the other two. Much attention

has been given to how geostrophic currents modify both

Ekman and near-inertial flows, and a brief review of previous

work is given below. By contrast, Ekman–NI interactions have

received less attention. Here, we consider an idealized model

in which all three of these flow types interact, although our

main focus will be on Ekman–NI and Ekman–geostrophic

nonlinearities.

Geostrophic modification of Ekman transport and pumping

is the subject of nonlinear Ekman theory. Pioneering work by

Stern (1965) considered a uniform wind stress t blowing over a

geostrophic vortex and found the pumping velocity to go like

= � [(t3 ẑ)/(f 1 z)], where f is the Coriolis parameter and z is

the relative vorticity associated with the vortex. Other work

has focused on straight jets and has extended solutions to

higher order (Niiler 1969), compared along- and across-stream

stresses (Lee et al. 1994), used vorticity dynamics to examine

interactions with stratification (e.g., Thomas and Rhines 2002),

and examined higher-order Rossby number effects on the

pumping velocity (Hart 2000) and the vertical thickness of the

Ekman layer (Pedlosky 2008). More recently, Wenegrat and

Thomas (2017) revisited solutions for curvilinear flows such as

vortices and meandering jets. Somewhat counterintuitively,

they pointed out that Stern’s result above does not imply that

the transport goes like (t3 ẑ)/(f 1 z). Of more direct interest

to us, their solutions produced complex and interesting struc-

tures that could not be expressed in terms of spatially local

fields such as t and z. Instead, nonlocal effects influence the

solution. [Nonlocality has also been suggested by Hart (2000)

and Pedlosky (2008).] Apart from these nonlinear Ekman ef-

fects, geostrophic currents can also impact Ekman transport

more directly in that the stress itself depends on both current

velocities (e.g., Duhaut and Straub 2006; Dawe and Thompson

2006; Zhai et al. 2012) and sea surface temperature (e.g., Small

et al. 2008; Chelton and Xie 2010; O’Neill et al. 2012; Grooms

and Nadeau 2016). A series of studies has compared and

discussed these effects in the context of eddy–wind interac-

tions (McGillicuddy et al. 2007; Mahadevan et al. 2008;

McGillicuddy et al. 2008; Gaube et al. 2015).

Also well appreciated in the literature is that geostrophic

currents profoundly influence near-inertial oscillations. Inertial

oscillations introduced by large horizontal scale winds, for

example, quickly develop smaller horizontal scales due to both

b effect (D’Asaro 1989) and the relative vorticity of mesoscale

structures (e.g., Perkins 1976; Kunze 1985; van Meurs 1998;

Elipot et al. 2010). Recent progress has been summarized by

Asselin and Young (2020), who made use of a reduced model

similar to that used by Xie and Vanneste (2015) and based on

the model of Young and Jelloul (1997, hereafter YBJ).

Simulations initialized by adding horizontally uniform inertial

oscillations to geostrophic turbulence show near-inertial

energy to be quickly imprinted on mesoscale eddies by re-

fraction (Rocha et al. 2018; Asselin and Young 2020). Wave

propagation then redistributes this energy horizontally,

evacuating it from cyclones and concentrating it into anti-

cyclones. In the anticyclones, a further collapse in hori-

zontal scale serves to increase the vertical group velocity of

the waves (see Gill 1984), thus allowing wave energy to exitCorresponding author: Yanxu Chen, yanxu.chen@mail.mcgill.ca
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the surface layer in inertial drain pipes similar to those

predicted by Kunze (1985).

Another approach to modeling geostrophic–NI interaction

has been to make use of slab models (e.g., D’Asaro 1985; Klein

andHua 1988; Alford 2001, 2003;Whitt and Thomas 2015; Jing

et al. 2017). These models lack wave propagation but do allow

for refractive and advective effects. Of particular interest to

us is an early result in which Weller (1982) analyzed a slab-

layer model1 to show that the order Rossby number diver-

gence of a geostrophic flow can lead to growth or decay of

near-inertial oscillations. In the surface layer, the back-

ground flow available to interact with near-inertial oscil-

lations is not limited to geostrophic currents, but also

includes a strongly divergent Ekman-like component. It

thus seems plausible that an instability similar to that de-

scribed by Weller may also result from Ekman–NI inter-

actions, and one of our key results will be to show that this is

in fact the case.

In this work, we consider different versions of a slab model

and then couple these to a two-layer shallow water model. The

coupling is two-way. The upper-layer velocity of our two-layer

model is the equivalent of the background geostrophic flows

described above. The slab itself contains both high and low

frequencies, the equivalents of near-inertial oscillations and

nonlinear Ekman transport in the setting we propose. One

version of the slab model allows for self-advection of slab-layer

momentum, thus allowing these low- and high-frequency

bands of the slab-layer flow to interact. Each of these also

interacts with the interior flow, as represented by the two-

layer model. To our knowledge, this is the first model that

considers a two-way coupling between the slab and interior

dynamics.

The paper is organized as follows. The experimental design

andmodel details, including the two versions of our slab model

and how they are coupled to the two-layer model, are pre-

sented in section 2. A steady wind stress excites baroclinically

unstable jets and transient forcing adds near-inertial oscilla-

tions to a highly idealized model configuration. Section 3

presents results. We find statistical equilibria under steady

forcing to be relatively insensitive to whether a slab or body

force is used to drive the two-layer model. The choice of

forcing does, however, significantly impact both the spinups to

equilibrium under steady forcing and equilibrium solutions

when additional transient forcing is added. In particular, robust

differences are found in the unbalanced part of the flow. We

hypothesize that these differences are related to an instability

similar to that described by Weller. How the differences ap-

pear in surface pressure fields is also considered, as this might

lend insight into the context of the upcoming Surface Water

and Ocean Topography (SWOT) mission (Gaultier et al. 2016;

Torres et al. 2018; Morrow et al. 2019). A brief discussion is

offered in section 4.

2. Model

a. The two-layer shallow water model

In this section, we present a two-layer shallow water

model to which wind forcing can be applied either as a body

force or via the intermediary of a frictional slab layer em-

bedded in the upper layer of the two-layer model. Denoting

the upper- and lower-layer horizontal velocities as u1 and u2,

we have
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where r0 is the density of seawater and the coefficient dBF is a

switch.When dBF is set to one, wind forcing is applied as a body

force (BF) distributed over the upper layer. When it is zero,

wind stress is instead applied to a slab layer and divergence of

the resulting slab-layer transport, = � Us, appears as a forcing

term in the upper-layer mass equation. Other notation is fairly

standard: f1 5 r21
0 ps, f2 5 f1 1 g0h, where ps is the surface

pressure field, h is the interface height field, and g0 is reduced
gravity. Imposing a rigid lid, the total depth H 5 d1 1 d2 is

constant, with layer depths d1 5H1 2 h and d2 5H2 1 h. The

termsD1 andD2 represent dissipation for the upper and lower

layers, respectively.

In all of the simulations reported below,H1 5 1000m,H2 5
3000m, and the Coriolis parameter is f 5 7 3 1025 s21. The

reduced gravity is chosen such that the internal gravity wave

speed is 2m s21, yielding an internal deformation radius of

about 28.6 km. We use a square doubly periodic domain with

width L 5 2000 km resolved by 512 grid points in each direc-

tion. This gives a grid spacing of about dx 5 3.9 km, implying

that the deformation radius is well resolved. Other parameters

used in our simulations are shown in Table 1.

b. The slab layer

Two versions of the slab-layer model are considered. Version

S1 neglects the self-advection of slab-layer momentum and

version S2 attempts to retain it. Essentially, we consider that

embedded near the top of the surface layer of our two-layer

model is a boundary layer correction. Nonlinear Ekman

theory assumes this correction to vary slowly in time and to

obey a pressureless dynamics. That is, since the horizontal

pressure gradient force is depth-independent in each of the two

layers, it does not enter into the force balance of the boundary

layer z-dependent horizontal velocity us. In S1, terms quadratic

in us are neglected, and it is straightforward to integrate ver-

tically to get a prognostic equation for the slab-layer transport,

Us 5
Ð
us dz. When quadratic terms in us are kept, however,

integrating vertically requires further assumptions. A simple

1 It is interesting to note that Weller’s slab-layer approach drew

on Stern’s (see chapter 8 of Stern 1975). While Stern’s focus was

mainly on the nonlinear Ekman theory, he also considered par-

ticular solutions under oscillatory forcing and noted a singularity at

the inertial frequency. Weller’s instability, by contrast, came from

an examination of homogeneous solutions.
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choice is to assume a depth-independent constant value of us. The

vertical integral of (us � =)us is then given by (1/Hs)(Us � =)Us,

where Hs is an assumed slab-layer thickness.2 The first version

of the slab-layer model, S1, is given by
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Here, Ds is a dissipation term to be described below. To

compare, the model in Wenegrat and Thomas (2017) corre-

sponds to S1 rewritten in curvilinear coordinates and without

the tendency and dissipation terms. S1 is also similar to slab-

layer models such as those used by Weller (1982) and Stern

(1975). Differences are thatWeller dropped the (u1 �=)Us term

following a scale analysis for the problem he considered, and

Stern retained an additional term related to vertical advection

of horizontal momentum [see Eq. (8) of section 3d below, and

Eq. 8.2.20 of Stern (1975)]. Stern also considered a term similar

to the self-advection of slab-layer momentum retained in S2,

but then restricted attention to a regime in which it could be

neglected.

c. Wind forcing

Forcing is by a zonal wind stress, the amplitude of which has

steady and time-dependent components. That is,

t5 [t
0
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1
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�
2py

L

�
x̂ , (2)

in which t0 5 0.1Nm22 and t1 is normalized such that its RMS

value is 0.2t0 (with a maximum value of 0.83t0). The steady

winds excite baroclinically unstable jets which fuel an eddy-rich

circulation. Transient forcing is similar to that used to excite

near-inertial oscillations in Taylor and Straub (2015) andBarkan

et al. (2017) and is meant as a very crude representation of

synoptic time scale winds. A time series for t1 is constructed by

combining 30 000 sinusoidswith randomphases andwith periods

linearly sampled between 0.1 and 3000 days. To be specific,

t
1
(t)5 �
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n51

A
n
sin(v

n
t1u

n
) , (3)

where the vn are frequencies, the un are random phases, and the

An are chosen so as to correspond to an Ornstein–Uhlenbeck

process with a damping time scale of 5 days. Application of this

time-dependent forcing to our model adds a robust field of near-

inertial oscillations, which are free to interact with the geo-

strophic and Ekman flows excited by the steady winds.

d. The dissipation terms

A biharmonic hyperviscosity is used to dissipate small-scale

variance in both the slab-layer and two-layer models. The two-

layer model also includes a linear bottom drag and an inverse

Laplacian damping. The latter is applied to the barotropic mode

and accounts for the bulk of energy dissipation in the two-layer

model. In the forced-dissipative f-plane equilibrium solutions that

TABLE 1. The parameters used in our simulations.

Parameters Symbols Values

BF, S1, and S2 simulations Domain size Lx 5 Ly 2000 km

Number of grid points nx 5 ny 512

Time step Dt 300 s

Coriolis parameter f 7 3 1025 s21

Amplitude of steady wind stress t0 0.1 Nm22

Biharmonic horizontal viscosity coefficient Abh dx4 3 1025 s21

Bottom drag coefficient rdrag 1027 s21

Inverse Laplacian dissipation coefficient rinvLap (2p/Ly)
2 3 1026 s21

Slab-layer thickness Hs 50m

Upper-layer thickness H1 1000m

Lower-layer thickness H2 3000m

Internal gravity wave speed cbc 2m s21

Simulations in appendix A Domain size Lx 5 Ly 1000 km

Number of grid points nx 5 ny 512

Time step Dt 100 s

Coriolis parameter f 7 3 1025 s21

Amplitude of steady wind stress t0 0.1 Nm22

Amplitude of unsteady wind stress t1 1023 Nm22

Biharmonic horizontal viscosity coefficient Abh dx4 3 1025 s21

Slab-layer thickness Hs 50m

Maximum Rossby number of the prescribed flows Romax 0.06

2One might also consider a more general choice of the vertical

structure us(z). In this case, the quadratic term will have a different

vertical structure from the linear terms, and how one might pro-

ceed is discussed in appendix B.

MARCH 2021 CHEN ET AL . 977



we consider, a strong inverse energy cascade leads to a pile-up of

energy near the largest available scales. The artificial inverse

Laplacian dissipates preferentially at large scales and thus results

in statistical equilibria that are not dominated by a small number

of domain-filling eddies. Referring to (1), S1, and S2,
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with coefficients given by rinvLap 5k2
0 3 1026 s21 and rdrag 5

1027 s21, in which k0 is the smallest horizontal wavenumber.

The biharmonic viscosity coefficients are given byAbh5 dx43
1025 s21 (in which dx is the grid spacing) for both the slab

Ekman layer and the two interior layers. Other parameters are

shown in Table 1.

3. Results

This section presents results from our two-layer model

simulations. For steady forcing, equilibrium solutions are in-

sensitive to whether forcing is applied using the S1 or S2 slab

models or as a body force (BF). Spinups to equilibrium, how-

ever, are qualitatively different. Also qualitatively different are

statistical equilibria when unsteady forcing is included. These

differences are evident both in the slab layer and interior ve-

locity fields, and are related to an instability in which near-

inertial motion grows in the presence of convergent Ekman

flow. We also comment on how these differences are reflected

in the surface pressure field, as this is of interest in anticipation

of the upcoming SWOT mission. Finally, we briefly consider

how vertical advection—which was neglected in our slab-layer

model equations—might be included.

a. Spinup under steady forcing

Sample snapshots of the pumping velocity ws and upper-

layer current speed ju1j for a simulation using S1 and steady

forcing are shown in Fig. 1. The pumping velocity shows both

the wavenumber one pattern imposed by the forcing as well as

smaller-scale structures related to the surface currents. These

smaller-scale structures evolve on the time scales associated

with the geostrophic turbulence (not shown). As will be shown

below, forcing instead with S2 yields qualitatively similar re-

sults at statistical equilibrium.

The spinups, by contrast, are quite different depending on

whether S1 or S2 is used. Forcing with S2 produces a strong

north–south asymmetry between the cyclonic (northern)

and anticyclonic (southern) regions of wind forcing. This is

shown in Fig. 2, and is absent in S1 and BF simulations.

Figures 2a and 2b present Hovmöller diagrams of ws for a

spinup from rest using S2. Figure 2a gives a blow-up of the

first 150 days of this 2000-day spinup. Superposed on a

steady wavenumber one pattern are near-inertial oscilla-

tions that grow in the southern part of the domain and

decay in the north. Also evident is an interference pattern

with a longer period of about 10 days. At around day 1200,

baroclinic instability produces a rich eddy field. This serves

to advect and eventually dissipate the near-inertial oscil-

lations (see also selected snapshots in Figs. 2c–d). By t 5
1600 days, the asymmetry has disappeared in the S2 sim-

ulations, and the pumping velocity becomes qualitatively

similar to that found using S1 (cf. Fig. 2e with Fig. 1b).

Spinup of an analogous S1 simulation shows similar near-

inertial oscillations, but with no asymmetry between the

north and the south.

The initial instability can be understood in a relatively

straightforward fashion. We consider the limit where Us

is well approximated by the standard Ekman drift plus

a weaker perturbation. For a zonal wind stress, this gives

Us ’VEkŷ1U0, where VEk 52tx/(r0f ) is the large-scale

Ekman transport and U0 5U 0x̂1V 0ŷ is considered small

by comparison. The leading-order pumping velocity is

that given by linear Ekman theory, i.e., wEk 5 (›/›y)VEk.

To further simplify, the interior velocity is also assumed

to be small (u1 is small compared to U0/Hs), so that

FIG. 1. S1 simulation with steady wind forcing. (a) Wind stress structure. (b) Pumping velocities. (c) Upper-layer speed.
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perturbations to the S2 slab-layer momentum evolve ac-

cording to
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Referring back to Fig. 2, we note that the core of the instability

occurs where VEk 5 0. Taking this to be the case (i.e., focusing

on the latitude of maximum pumping), the two equations

above can be combined to yield

V 0
tt 1sV 0

t 1 f 2V 0 5 0, (6)

where s5 wEk/Hs. Depending on the sign of the pumping, this

describes either a damped or a growing harmonic oscillation.

Fors small compared to f, (6) predicts near-inertial oscillations

whose amplitude grows at rate 2s/2. In words, downwelling

implies growth and the growth rate goes like the pumping ve-

locity normalized by the slab-layer thickness.

The only significant difference between the above insta-

bility and that discussed by Weller is one of interpretation.

In our case, the base state is defined as an Ekman flow,

whereas in Weller’s it was a geostrophic flow which included

an order Rossby number divergence. Mathematically, the

FIG. 2. Pumping velocities for a spinup under steady forcing using the S2 model. Hovmöller diagrams for (a) the first 150 days and (b) the

full 2000 days of the simulation. (c)–(e) Snapshots at 1200, 1400, and 1600 days, as marked by dashed lines in (b).
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two instabilities are equivalent (see Weller 1982, p. 1133).

Klein and Treguier (1993) also derived an equation similar

to (6), except that the damping or growth came from a

spatial derivative, rather than from a time derivative as in

our sV 0
t term [see their Eq. (19)]. They were examining a

wind-forced reduced gravity model and found winds blow-

ing across a geostrophic current to facilitate a collapse in

horizontal scale of near-inertial motion. When the resulting

waves propagated upwind, an instability was evident from

the linear dispersion relation. Negatively damped harmonic

oscillations in the context of geostrophic–NI interaction

have also been discussed in detail by Whitt and Thomas

(2015). The case they considered was similar to Weller in

that the base state was meant to represent a geostrophic

current. It was different in that horizontal divergence was

assumed to vanish and the damping resulted from a

Rayleigh drag term.

At later times the interior velocity, u1, can no longer be ig-

nored and the dynamics becomes more complex until, even-

tually, any obvious asymmetry between the upwelling and

downwelling regions is lost. We rationalize this disappearance

by noting that advection terms involving u1 can be expected to

cascade variance in U0 toward small scales. Eventually, these

more turbulent effects dominate over this relatively weak in-

stability. In other words, the geostrophic turbulence transfers

near-inertial variance in Us downscale faster than it can be

produced by this instability mechanism. As we discuss below,

however, with time-dependent forcing, strong asymmetry

persists at statistical equilibrium.

b. Equilibrium solutions under transient forcing

In this subsection we consider the effect of adding time-

dependent forcing [see Eqs. (2) and (3)]. Snapshots and fre-

quency spectra of the pumping velocity at statistical equilibrium

are shown in Fig. 3. For both S1 and S2, transients are much

stronger than was the case for steady forcing. For example,

the wavenumber one structure that was clearly evident

under steady forcing becomes difficult to discern. For S1, a

strong near-inertial peak and weaker peak near 2f are evident

and low frequencies are unaffected. For S2, the increase in

amplitude (relative to steady forcing) includes both a near-

inertial peak and a more broad banded response. In particular,

peaks centered on integer multiples of f and an increased

variance at low frequencies are evident. Peaks at multiples of f

are more robust since in S2 these are readily excited by qua-

dratic nonlinearity of slab-layer near-inertial modes, whereas

in S1 they are instead excited by interactions between the slab

layer and the weaker interior near-inertial flow.

Snapshots for the S2 simulation show a clear north–south

asymmetry similar to that seen in the spinup with steady

forcing. Under steady forcing, this asymmetry disappeared as

geostrophic turbulence swept near-inertial variance downscale

faster than it could be produced by the instability. Transient

forcing serves to continuously seed the instability seen in the

previous section. We can think of the northern and southern

halves of the domain as similar to damped harmonic oscilla-

tors, but with positive damping in the north and negative

damping in the south. Presumably it is this difference in the

dynamics that produces the strong asymmetry seen in the Fig.

3c. That said, other nonlinearities present in S2 but absent in S1

that are not directly related to the instability may also be at

play. For example, the large-scale (linear) Ekman drift acts to

advect smaller scale features in the slab layer toward regions of

downwelling. Additionally, the instability described above is a

simplification in that slowly varying nonlinear Ekman diver-

gence could also be considered part of the base state flow.

We next consider differences in the interior response to the

different forcing prescriptions. Frequency spectra of kinetic

energy are shown in Fig. 4. Upper- and lower-layer KE cor-

respond to the variance of u1 and u2 and are not weighted by

either H1,2 or d1,2. Similarly, barotropic and baroclinic KE

correspond to the variance of the two linear mode velocities:

uBC5 u22 u1 and uBT5 (H1u11H2u2)/H. At low frequencies,

differences among the three formulations are small. Comparing

simulations forced using BF and S1, results are similar in the

lower layer but differ in the upper layer (and therefore in pro-

jections onto the barotropic and baroclinic modes). These dif-

ferences, however, can be made small by recalculating the

spectra, but substituting u0
1 for u1, where the former is given by

u0
1 5u1 1Us/Hs. In other words, if one distributes the slab-layer

FIG. 3. Pumping velocities for the S1 and S2 models forced by a combination of steady and unsteady forcing. Shown are (a) zonally

averagedRMS value ofws averaged over 300 days (red for S1, blue for S2 and dashed black for reference), (b) snapshot of S1, (c) snapshot

of S2, and (d) frequency spectra of ws. The dashed line in (d) illustrates the frequency spectrum of unsteady forcing, of which the high-

frequency components start to decrease at 0.2 cycle per day (cpd).
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velocity over the upper layer, the S1 and BF forcings produce

similar results. This suggests that differences between these two

formulations have mainly to do with bookkeeping: the S1 for-

mulation allows us to separate the total upper-layer velocity into

slab-layer and interior components, but this separation has rel-

atively little impact on the kinetic energy spectra. Differences

between S2 and the other two forcing prescriptions are more

substantial, with S2 showing increased superinertial energy in

both layers.

That there is a near-inertial peak in the barotropicmode also

deserves comment in that a stand-alone barotropic model does

not admit inertial oscillations. Recall that we use a linear

definition of the barotropic mode. Since it is the vertically in-

tegrated transport (and not its linear approximation) that must

be nondivergent, there is an implied horizontal divergence in

uBT. Specifically, its divergence must cancel that of huBC 1Us.

That is, it is the divergence of (H12 h)u11 (H21 h)u21Us or,

equivalently, of HuBT 1 huBC 1 Us which must vanish. Since

both uBC andUs include divergence at near-inertial time scales,

so then must uBT. The inertial peak in the barotropic mode is

considerably stronger for S1 than for BF forcing (bottom-right

panel of Fig. 4), which indicates that Us dominates over huBC.

Spectra for the S2 case are similar to S1, except for an addi-

tional peak near 2f.

Recall from Fig. 3 that transient S2 forcing produces

pumping velocities that have both an increased low-frequency

signature and a 2f peak (see dashed blue curve in Fig. 3d). This

is a consequence of the quadratic nonlinearity kept in S2, but

filtered in S1. In other words, quadratic nonlinearity of near-

inertial motion projects onto both low frequencies and to fre-

quencies close to 2f. This additional low-frequency pumping

does not, however, seem to excite a large interior response. For

example, little difference between KE spectra is seen between

the S1 and S2 cases in Fig. 4. We are nonetheless curious as to

whether the added low-frequency pumping in our S2 simula-

tion might impact the low-frequency dynamics in some other

significant way. One possibility is that the low-frequency ws

might provide a significant energy source or sink to the bal-

anced flow. To assess this, recall that the wind power input to

quasigeostrophic flows can be interpreted as an area integral

and time average of the pumping velocity multiplied by the

upper-layer streamfunction.3 In our simulations, this is equiv-

alent to the low-passed pumping velocity multiplied by a low-

passed version of surface pressure. We calculated this and

found a correlation that was consistent with an energy sink (not

FIG. 4. Frequency spectra of kinetic energy for (KE1) the upper layer, (KE2) the lower layer, (KEbc) the linear

baroclinic mode, and (KEbt) the barotropicmode. KE1 andKE2 correspond to the variance of u1 and u2 and are not

weighted by layer thickness. Similarly, KEbt and KEbc correspond to velocity variance for the two linear modes,

defined as ubc 5 u2 2 u1 and ubt 5 (H1u1 1 H2u2)/H.

3 That is, multiplying the quasigeostrophic potential vorticity

equation by the streamfunction, c, and integrating by parts yields

the energy equation (Pedlosky 1987). Since ws appears as a forcing

term in the potential vorticity equation, cws or, equivalently, hws

appears as a forcing term for the energy.
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shown). This sink of balanced energy, however, was small

compared to the sink related to the artificial removal of energy

by the inverse Laplacian dissipation. Because the principal

energy sink is artificial, we did not pursue this analysis further.

c. Projections onto surface pressure

In the context of the upcoming SWOT satellite altimetry

mission, it is interesting to consider how the high-frequency

signals seen in the three models project onto surface pressure.

SWOTwill measure sea surface height at horizontal scales near

the mesoscale–submesoscale transition and there is interest in

decomposing the signal into balanced and unbalanced com-

ponents (Torres et al. 2018). Our model uses a rigid lid, and we

take pressure on the lid as the model equivalent of sea surface

height. In the S1 and S2 slab models, Us is pressureless by

design. As such, surface pressuremust be related to the interior

velocity field, e.g., to uBT and uBC.

The baroclinic mode can be further decomposed into geo-

strophic and ageostrophic contributions using the well-known

linear mode decomposition (e.g., Salmon 1998). Recognizing

that the linear (quasigeostrophic) potential vorticity is zero for

Poincarré waves, we can define a streamfunction for the geo-

strophic part of the baroclinic flow by

=2c2
f 2

gH
eff

c5 z
BC

2
f

H
eff

h , (7)

where zBC is baroclinic relative vorticity and Heff 5 H1H2/H.

Applying geostrophy relates c to the interface height field h.

Given c, one can then infer the portion of the h field that is

associated with the geostrophic part of the baroclinic flow. The

residual is related to ageostrophic modes. Then, since surface

pressure is negatively proportional to h for a baroclinic mode,

it is straightforward to decompose the surface pressure field

into three parts: one related to the barotropic mode and two

related, respectively, to geostrophic and ageostrophic parts of

the baroclinic mode.

Using this methodology, we decomposed high-passed

snapshots of the S1, S2, and BF simulations to infer the high-

passed surface pressure and its projections onto the geo-

strophic and ageostrophic parts of the baroclinic mode. The

high-pass filter was defined as a weighted average over an

8-day window, with the weighting function defined by a

Gaussian with a 1.2-day time scale and centered in the

window. Results are shown in Fig. 5 and the contrast among

the three cases is striking. For BF forcing, high-passed sur-

face pressure is dominated by fast time scale baroclinic

‘‘geostrophic’’ modes. For S1, geostrophic and ageostrophic

contributions are more comparable (and, curiously, show a

large degree of cancellation) and for S2, ageostrophic modes

are larger, especially at small scales. The point we wish to

emphasize here is not so much the detailed differences of

these three cases, but simply that unbalanced contributions

to surface pressure appear sensitive to how surface-layer

dynamics is represented. In more complete models, for ex-

ample, high-frequency contributions to sea surface height

will likely be sensitive to resolution and parameterization

choices.

d. Vertical advection terms

In deriving our slab models, vertical advection of slab-layer

momentum was neglected. That is, w1›zus and ws›zus terms

are not accounted for in S1 and S2. We first consider vertical

advection of slab-layer momentum by the interior vertical

velocity, i.e., the w1›zus term. This can be dealt with in a

straightforward manner by noting that w1 5 2z(= � u1) and

integrating by parts over the surface layer to obtain

ð
w

1

›

›z
u
s
dz5 (= � u

1
)U

s
. (8)

Accounting for the ws›zus term is less straightforward, but

leads to a similar expression. Specifically, we find

ð
w

s

›

›z
u
s
dz5

1

2H
s

(= �U
s
)U

s
. (9)

The coefficient 1/(2Hs) is similar to the 1/Hs seen for the ad-

vective term in S2. Here, an additional factor of 1/2 appears, as

is discussed in appendix B.

Including the (= � u1)Us term in our S1 or S2 simulations does

not lead to any noticeable differences; however, including a

(1/2Hs)(= �Us)Us term in our S2 simulations does. Essentially,

this term serves to exacerbate differences between S1 and S2.

For example, growth rates in the instability described by s [see

(6)] are faster by a factor of 2 when the additional term is in-

cluded. This, in turn, leads to increased asymmetries between

the northern and southern parts of our domain in simulations

forced with unsteady winds. The effect of adding this vertical

advection term is qualitatively similar to that of reducing Hs.

This is evident fromFig. 6, which shows snapshots ofws for four

simulations, with and without the vertical advection term and

for different choices ofHs. Forcing is similar to that used in our

transient forcing simulations above. Neglecting the vertical

advection term and taking Hs 5 25m gives results that are

qualitatively similar to retaining the vertical advection term

and taking Hs 5 50m. Similarly, retaining vertical advection

and usingHs5 100m gives results similar to neglecting vertical

advection and taking Hs 5 50m.

4. Conclusions

We used different slab-layer models to represent nonlinear

Ekman flows and surface-layer near-inertial oscillations, and

coupled these slab layers to a two-layer shallowwater model. Our

original motivation was to see what impacts these modeling

choices might have on geostrophic turbulence excited by wind

forcing. In particular, Wenegrat and Thomas (2017) pointed out

that the nonlinearEkman equations produced interesting features

in curvilinear flows. These and other modifications to linear

Ekman theory can be large and have been shown, for example, to

influence vertical nutrient transport, affecting biological produc-

tivity and carbon uptake (e.g.,Mahadevan et al. 2008;Mahadevan

2016). We did not find that embedding a slab layer in our two-

layer model had an obvious impact on the low-frequency portion

of the interior (two-layer) flow. It did, however, strongly impact

the high frequencies. Other main conclusions are as follows:
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1) Allowing for self-advection of slab-layermomentum leads to a

strong asymmetry between regions of large-scale cyclonic and

anticyclonic forcing. This asymmetry arises as the result of a

new instability [which can be thought of as a reinterpretation

of the well-known instability described byWeller (1982)]. It is

distinct from inertial or symmetric instability in which growth

is related to anticyclonic vorticity in background flow. Instead,

here it is the sign of the forcing that matters. In our S2 simu-

lations, effects of the instability are evident

(i) in spinups under steady forcing, and

(ii) at equilibrium when transient forcing is added.

2) Interactions between near-inertial and Ekman-like flows in our

S2 slabmodel are two-way. For example, transient forcing leads

to both increased high- and low-frequency variance of pumping

velocities. We interpret the latter as a transfer from high-to-low

frequencies via quadratic nonlinearity in the slab-layer equation.

3) Differences of the interior kinetic energy spectra between

simulations forced using our S1 and S2 versions of the slab

FIG. 5. High-passed pressure fields in BF, S1, and S2 simulations using a combination of steady and unsteady winds. (left) Total high-

passed pressure, (center) geostrophic component, and (right) ageostrophic component. Note that the center and right panels are blow-ups

of the subdomain indicated by the dashed lines on the left panels. The barotropic component was considered geostrophic. It is included in

the center panel fields and is small.
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model are largely confined to high frequencies. The in-

creased low-frequency pumping in our S2 simulations does

not produce an obvious low-frequency response in the

interior flow.

4) The different modeling choices considered lead to large

differences in high-frequency components of the flow.

Although the size of these differences (cf. Fig. 5) is surely an

artifact of the simplicity of our model, the results nonethe-

less suggest that the details of how the upper ocean is rep-

resented will lead to differences in wind-driven unbalanced

flow, including how it projects onto sea surface height.

The coupled model we developed omits horizontal propa-

gation of surface-layer near-inertial waves and does not ac-

count for vertical structure in the slab-layer flow. It will

therefore be interesting to test the robustness of our results in a

more complete setting. In particular, we wish to test whether

the instability found using S2 has a counterpart in general

circulation models that vertically resolve the surface layer. In a

related study, we use large-eddy simulations to show that the

Boussinesq equations do indeed admit an instability similar to

the one described here (K. Duquette et al. 2020, unpublished

manuscript).

Also interesting will be to consider Ekman–NI interaction

in simulations that (i) allow for wave propagation and (ii) take

into account dependence of wind stress on ocean current ve-

locities. Allowing for surface velocity effects, one anticipates

anticyclonic forcing over cyclones and cyclonic forcing over

anticyclones (Duhaut and Straub 2006). That is, one expects

increased convergence of the (linear) Ekman flow over cy-

clonic eddies and increased divergence over anticyclonic

eddies. Because inertia–gravity waves quickly propagate out of

cyclones, the increased convergence over anticyclones will

likely be more significant. In other words, the decay version of

the instability we describe may prove important over anticy-

clones, where it could supplement vertical wave propagation to

provide an additional mechanism for removing near-inertial

energy from the surface layer.

FIG. 6. Influence of the vertical advection terms in S2 simulations with a combination of steady and unsteady

winds. Upper panels are pumping velocities without vertical advection using Hs 5 [25m, 50m], and lower panels

are pumping velocities with vertical advection using Hs 5 [50 m, 100 m].
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Finally, YBJ-type models such as that used by Asselin and

Young (2020) typically side-step direct representation of the

Ekman layer, e.g., by assuming near-inertial motion to be

added impulsively at some initial time. As pointed out here,

and by Wenegrat and Thomas (2017), nonlinear Ekman flows

are complex and cannot be inferred from a spatially local

knowledge of the surface velocity and wind stress. In our

model, they obey a pressureless dynamics and therefore

cannot be represented by balance relations such as quasi-

geostrophy. YBJ models typically use a modified version of

quasi-geostrophy to represent the low-frequency part of the

total motion (although Xie and Vanneste (2015) pointed out

that other choices might be possible). For these models to

capture the total low-frequency flow—including both geo-

strophic and nonlinear Ekman components—may require a

more appropriate balance law. Given such a law, presum-

ably nonlinear Ekman flows could be incorporated by sim-

ply adding vertical viscosity to the equations and choosing

appropriate boundary conditions for the elliptic inversion.

This would allow these models to include effects such as

those we discuss here.
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APPENDIX A

Slab Layer Results for Simple Specified Flows

Here we compare the S1 and S2 versions of the slab model

in a stand-alone configuration. Specifically, we consider their

response to a uniform wind stress blowing over a horizontally

nondivergent circular eddy (described by a Gaussian stream-

function and such that the Rossby number, jzj/f, is about 0.06).
The wind stress t is uniform in the x̂ direction, and produces a

leading-order southward Ekman transport of about 1.4m2 s21.

Results at steady state are similar to those described by

Wenegrat and Thomas (2017, see their Fig. 3), who used a

similar setup. That is, nonlinear Ekman effects produce di-

vergent zones on the northern and southern sides of the eddy,

with the sign dependent on the vortex polarity.

The S1 and S2 models produce similar results in the long

time limit. They both also produce fast time scale transients,

which are robust, long-lived and different between the two

models. The transients are evident even in simulations for

which the forcing is ramped up over several inertial periods.

Sample snapshots of the pumping are shown in Fig. A1. In the

S1 simulations, the transients appear as clockwise whirling

rings confined to the eddy, whereas in the S2 simulations these

rings are pushed away by the leading-order southward Ekman

drift. Animations of these simulations also show other differences

between cyclones and anticyclones. For example, in the cyclones,

phase propagation is outward near the center and inward on the

periphery, whereas these signs are reversed in anticyclones.

We also considered solutions forced by a combination of

steady and oscillatory winds. Specifically, forcing takes the

form of a spatially uniform, oscillating eastward stress with

tx 5 t0 1 t1 sin(vt). The two panels in Fig. A2 show frequency

spectra of pumping velocities in the S1 model with different

choices of the forcing frequency v. Spectra were calculated

using output between 50 and 100 inertial periods following

application of the oscillatory forcing. Unsurprisingly, the

response shows a peak at the forcing frequency. Notice also

the presence of a secondary peak on the flank of the main

inertial peak corresponding to the relative vorticity of the

eddy. Less obvious is that peaks near the inertial frequency

persist even when the forcing is off-inertial. These near-

inertial peaks, however, get weaker as the forcing becomes

more off-resonant. They also become weaker if a later time

window is used to do the analysis. That is, they result from a

homogeneous part of the solution needed to satisfy initial

conditions. This homogeneous part decays, albeit slowly,

in time.

APPENDIX B

Computation of the Projection Coefficients

The projection coefficient 1/(2Hs) in Eq. (9) is a factor

of 2 smaller than similar coefficients in S2. To understand this

difference, we assume that us has some known vertical struc-

ture a(z). Consistent with previous assumptions, we take

a5 1, z.2H
s
,

a5 0:5, z52H
s
,

FIG. A1. Pumping velocities in slab models with prescribed cir-

cular vortices forced by steady wind stress for (top row) the S1

model and (bottom row) the S2 model. The vortices are described

by aGaussian streamfunctionwith an 80 km decay scale. Shown is a

subdomain centered on the vortices with dashed lines corre-

sponding to circles with radii of 100 and 200 km.
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a5 0, z,2H
s
, (B1)

where the factor of 1/2 at z52Hs is motivated by the Fourier

representation of a series of opposite-signed step functions.

For this choice of a(z), ›zus is zero in the slab layer but has

a delta function contribution at the base of the slab layer. That

is, ›zus 5 d(z 1 Hs)Us/Hs. Since ws 5 = � Us at this depth,

one concludes that

w
s
›
z
u
s
5 (= �U

s
)
d(z1H

s
)U

s

H
s

. (B2)

We wish to project this delta function of z onto a(z). In

general, the projection of a function b(z) onto a is given by

Proj
b/a

5

ð
a(z)b(z) dzð
a2(z) dz

, (B3)

where the integral extends over all z , 0. Taking b(z) 5
(1/Hs)(= � Us)d(z 1 Hs)Us gives Projb/a 5 (1/2Hs)(= � Us)Us,

consistent with (9).

The factor of 1/2 above may vary depending on the structure

of a(z). We also considered using an exponential profile to

define a(z). For this case, a similar procedure is also used for

the (us � =)us term. That is, the vertical integral of this term is

taken to be g(Us � =)Us, where g is a projection coefficient

found by projecting the vertical structure of a2(z) back onto

that of a. This leads to a similar result to that reported above.

Specifically, the factor multiplying (Us � =)Us in S2 is twice as

large as the factor multiplying the (= � Us)Us term.

Finally, one could argue that this factor of 0.5 should also

appear in (8). In other words, (8) was obtained using a

straightforward integral over the slab layer. If we were in-

stead to assume a vertical structure and project that vertical

structure back onto a prior to integrating, then a projection

factor similar to that in (9) would appear. As noted in the

text, however, this term has little obvious impact on our

results and the projection coefficient was taken to be unity,

as in (8) in our simulations.
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