Water mass subduction in the isopycnic coordinate

Year a

Mixed laver

Introduction

Considering either 1) the continuity of the entire surface mixed layer, or 2) the movement of a water parcel at the base of the mixed layer with horizontal velocity u_b and vertical velocity w_b , e.g.,

the classic theory of water mass subduction finds the rate to be associated with three components:

Lateral induction Temporal variation of the MLD

Vertical velocity at the ML base

- Permanent subduction is linked to the water mass pumped into/from the permanent thermocline.
- * Theory of Stommel's demon: the summer subducted water is later reentrained into the surface layer again and has thus been neglected

٠ Obduction (upward transfer of fluid) occurs if the winter MLD is deeper than the previous winter.

Results

1. Subduction estimated at the migrating isopycnal

¹Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure

²Department of Atmospheric and Oceanic Sciences, **McGill University**

Contact: vanxu.chen@lmd.ens.fr Website: vanxu-chen.github.io

- Large scale is dominated by the vertical velocity at the ML base, i.e., Ekman pumping. ٠
- Spatial patterns along the ACC and in the polar North Atlantic are controlled by lateral induction. ٠
- ٠ Migration of isopycnals matters in the tropical and subtropical regions.
- * The temporal term does not vanish to zero as assumed in the theory of Stommel's demon.

"Eddy" component of subduction

accumulation: (b) daily accumulation. (c) and (d) further consider the modification of areas in terms of latitudes

Figure: (a) Outcrop area and subduction rate anomalies for $\sigma = 26.8$; (b) same as (a) but at $\sigma = 27.4$; (c) schematic of the net downward transport.

autur

Table: Densities of major upper-ocean water masses in the ECCO simulations and Argo observations.

A cronyms	Full name	Density range (ECCO)	Density range (Argo)
NPSTMW	North Pacific Subtropical Mode Water	$25.2 \le \sigma < 26.4$	$25.1 \le \sigma < 25.5$
NASTMW	North Atlantic Subtropical Mode Water	$25.2 \le \sigma < 26.4$	$26.4 \le \sigma < 26.6$
SHSTMW	Southern Hemisphere Subtropical Mode Water	$25.2 \le \sigma < 26.4$	$26.3 \le \sigma < 26.8$
SAMW	Subantarctic Mode Water	$26.4 \le \sigma < 27.1$	$26.8 \le \sigma < 27.2$
AAIW	Antarctic Intermediate Water	$27.1 \le \sigma < 27.6$	$26.8 \le \sigma < 27.4$

Main reference: Subduction of water masses in an eddying ocean. Marshall (1997).

Extensions to the theory

Yanxu Chen¹, Sabrina Speich¹ and David Straub²