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Background

Ekman	transport	and	pumping	are	known	to	be	modified	by	surface	currents.

Note	that	W&T	formulation	has	been	carried	out	in	
curvilinear	coordinates,	thus,	it	would	be	difficult	to	
apply	their	Ekman	equations	to	complicated	
background	flow	fields,	e.g.,	jets	with	a	random	
shape,	turbulent	eddies,	etc.	

We extend	the	W&T	Ekman	formulation	
by	adding	a	time-dependent	term.	This	
step	removes	the	need	for	integrating	
over	streamlines,	and	also	introduces	a	
near-inertial	component	to	the	Ekman	
pumping.

What	factors	
impact	the	response	of	

ocean	interior	flow	to	surface	
wind	stress?

1.	Representation	of	the	Ekman	layer
2.	Interaction	between	eddies	and	the	Ekman	layer

We	introduce	a	time-dependent	Ekman	
layer	which	interacts	with	eddy	velocities.

This	new	representation	of	the
Ekman	layer	benefits	associated	

dynamical	processes.

Numerical	Simulations

Typically, wind stress is applied as a body force over the ocean upper layer. We
instead assume a thin Ekman-like layer embedded in the upper layer.
Divergent Ekman transports then enter into the upper layer mass equation.
We compare different formulations using a two-layer shallow water model.

Standard method New method

We also consider other simple formulations,
e.g., using !

"#
as a body force or the classic

Ekman pumping as a forcing for the
upper-layer mass equation. However,
only the “standard” and “new”
methods are considered here.

Analysis:	Steady	Wind	
Stress	with	Shear

Ø First,	let’s	look	at	the	forcings.	We	focus	on	PV
forcing	to	get	an	“apples-to-apples”	comparison.

Here,	we	analyze	the	RHS	of	the	upper-layer	PV	equations,
which	can	be	called	PV	forcings.

The	new	forcing	shows	more	enstrophy input	at	high-frequencies,	whereas	
the	standard	forcing	shows	a	peak	at	intermediate-to-small	scales.	The	
latter	appears	related	to	coherent	eddies	with	large	interface	height	
displacements.		
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Content
Transport	depends	on	
the	stress	and	the	

Coriolis	parameter	only.

Allows	for	shear in	the	surface	
velocity	field	to	affect	the	transport:	

“nonlinear”	Ekman	theory.

Extends	Stern’s	results	to	
better	account for	curvature
in	the	surface	flow	path.
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Assumptions Homogeneous	deep	
ocean	at rest.

Valid for	plane	parallel	flows	(e.g.,	
straight	jets);	however,	validity	for	

curvilinear	flows	has	been	
questioned	by	Wenegrat &	Thomas.

Curvilinear	flows,	with	Ekman	
Rossby number	<<1	and	the	
balanced	Rossby number	<1.

Ø Next,	let’s	consider	the	upper-layer	
response		

In	contrast	to	notable	differences	in	PV	forcing,	upper-layer															
kinetics	of	different	simulations	act	similarly.																																							
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Simulations Standard	method New	method

Processes Wind	forcing	→ upper	layer	 Wind	forcing	→modified	Ekman	layer	→ upper	layer

Equations
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Simulations Standard	method New	method

Upper-layer	PV equations
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We	next	add	a	high-frequency	component	
to	the	wind,	which	oscillates	at	Coriolis	
frequency.	Again,	large	differences	are	
evident	in	the	(PV)	forcing	fields,	but	
these	do	not	lead	to	large	differences	in	
the	response.	Our	future	work	asks	why.	
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