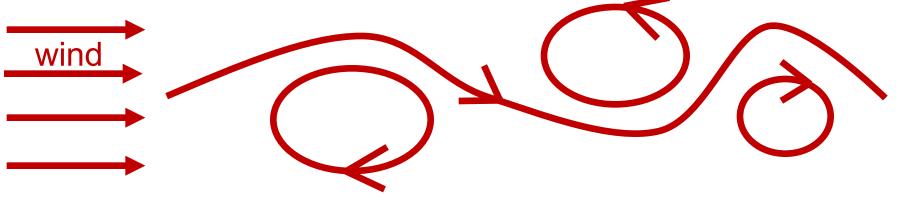


The Application of Flow-Dependent Ekman Transport to a Two-Layer **Shallow Water Model**

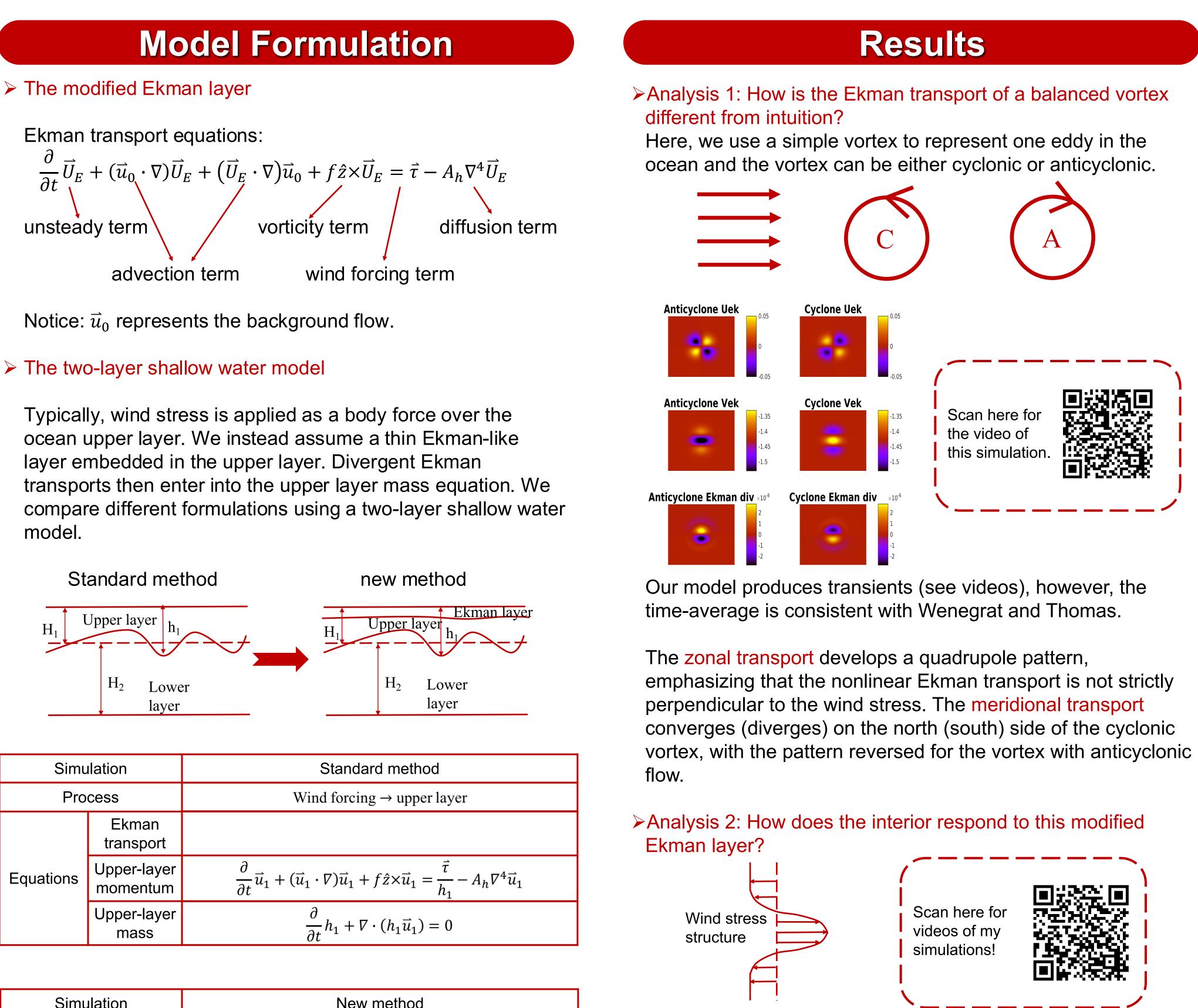
Background


\succ Ekman transport and pumping are known to be modified by surface currents.

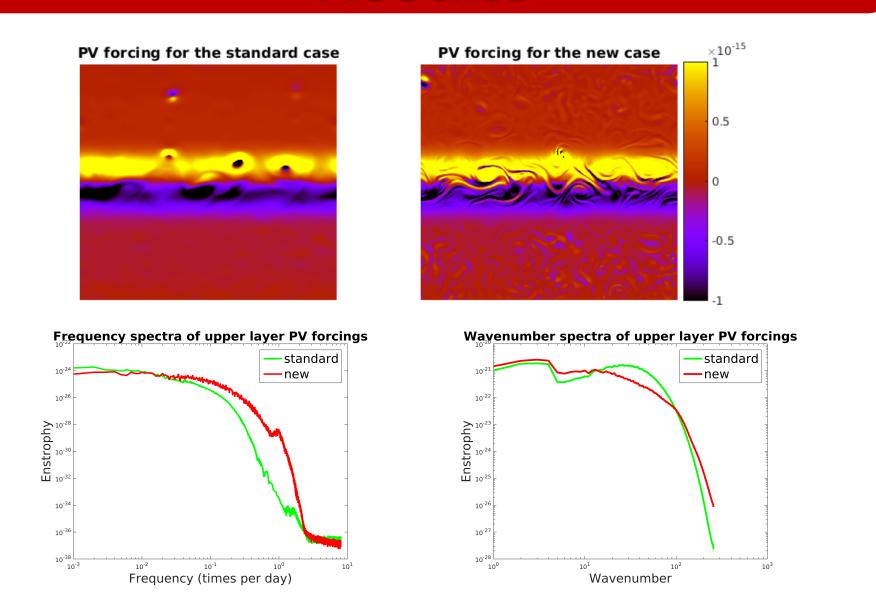
	Ekman (1905)	Stern (1965)	Wenegrat & Thomas (2017)
Content	Transport depends on the stress and the Coriolis parameter only.	Allows for shear in the surface velocity field to affect the transport: "nonlinear" Ekman theory.	Extends Stern's results to better account for curvature in the surface flow path.
Ekman transport	$U_E = \frac{\tau_y}{f}$ $V_E = -\frac{\tau_x}{f}$	$U_E = \frac{\tau_y}{f + \zeta}$ $V_E = -\frac{\tau_x}{f + \zeta}$	$\varepsilon \bar{u} \frac{\partial V_E}{\partial s} + (1 + \varepsilon 2\Omega) U_E = \tau_n$ $\varepsilon \bar{u} \frac{\partial U_E}{\partial s} - (1 + \varepsilon \zeta) V_E = \tau_s$
Assumptions	Homogeneous deep ocean at rest.	Valid for plane parallel flows (e.g., straight jets); however, validity for curvilinear flows has been questioned by Wenegrat & Thomas.	Curvilinear flows, with Ekman Rossby number <<1 and the balanced Rossby number <1.

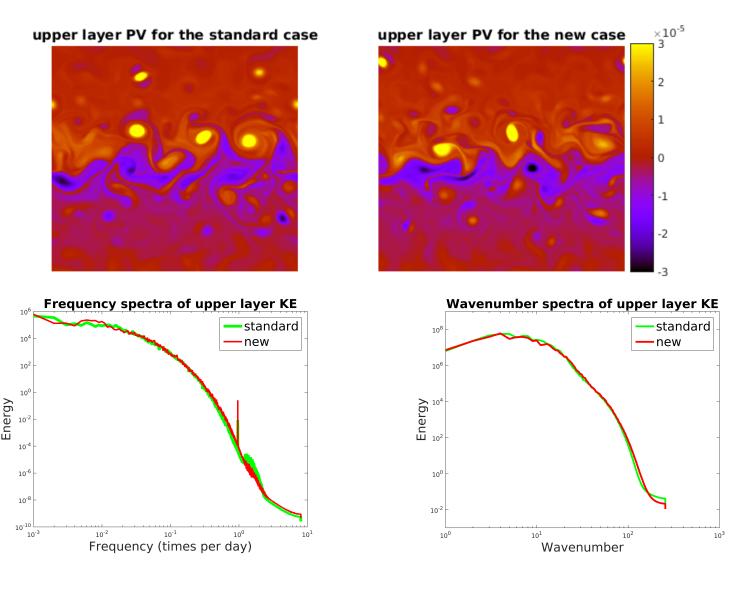
- > Note that W&T formulation has been carried out in curvilinear coordinates, thus, it would be difficult to apply their Ekman equations to complicated background flow fields, e.g., jets with a random shape, turbulent eddies, etc.
- > We extend the W&T Ekman formulation by adding a timedependent term. This step removes the need for integrating over streamlines, and also introduces a near-inertial component to the Ekman pumping.

Research Objective


 \succ The questions are: Whether this flow-dependent Ekman layer produces a different structure for Ekman transport; Whether the interior flow responds to this Ekman layer differently from the one with usual boundary layer setup.

Yanxu Chen¹, David Straub¹, Louis-Philippe Nadeau^{1,2} ¹Department of Atmospheric and Oceanic Sciences, McGill University, Canada


²Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Canada


Simulation		New method	
Process		Wind forcing \rightarrow modified Ekman layer \rightarrow upper layer	
uations	Ekman transport	$\frac{\partial}{\partial t}\vec{U}_E + (\vec{u}_1 \cdot \nabla)\vec{U}_E + (\vec{U}_E \cdot \nabla)\vec{u}_1 + f\hat{z} \times \vec{U}_E = \vec{\tau} - A_h \nabla^4 \vec{U}_E$	
	Upper-layer momentum	$\frac{\partial}{\partial t}\vec{u}_1 + (\vec{u}_1 \cdot \nabla)\vec{u}_1 + f\hat{z} \times \vec{u}_1 = -A_h \nabla^4 \vec{u}_1$	
	Upper-layer mass	$\frac{\partial}{\partial t}h_1 + \nabla \cdot (h_1 \vec{u}_1) = -w_E$	

First, we analyze the RHS of the upper-layer PV equations, which can be called PV forcings. If PV forcings are different for standard and new Ekman representations, then we expect different interior responses.

Simulations	Standard method	New method
Upper-layer PV equations	$\frac{Dq_1}{Dt} = \frac{1}{h_1} \left(\nabla \times \frac{\vec{\tau}}{h_1} \right)$	$\frac{Dq_1}{Dt} = \frac{q_1}{h_1} w_E$

The new forcing shows more enstrophy input at high-frequencies, whereas the standard forcing shows a peak at intermediate-tosmall scales. The latter appears related to coherent eddies with large interface height displacements.

Next, let's consider the upper-layer response. In contrast to notable differences in PV forcing, upper-layer kinetics of different simulations act similarly. Our future work will continue this analysis by adding a high-frequency component to the wind and compare upper-layer responses.

[1] Wenegrat and Thomas. Ekman transport in balanced currents with curvature. [2] Niiler. On the Ekman divergence in an oceanic jet. [3] Stern. Interaction of a uniform wind stress with a geostrophic vortex.

Results

References